大数据结构,大数据应用,大数据意义,大数据IT分析工具-大数据-E先生的博客
Java
MySQL
大数据
Python
前端
黑科技
大语言模型
    首页 >> 互联网 >> 大数据

大数据结构,大数据应用,大数据意义,大数据IT分析工具

[导读]:大数据结构 大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数...
大数据结构

  大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。
 
  其次,想要系统的认知大数据,必须要全面而细致的分解它,着手从三个层面来展开:
 
  第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
 
  第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
 
  第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。

大数据应用

  洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
 
  Google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
 
  统计学家内特·西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
 
  麻省理工学院利用手机定位数据和交通数据建立城市规划。
 
  梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
 
  医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。

大数据意义

  现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。阿里巴巴创办人马云来台演讲中就提到,未来的时代将不是IT时代,而是DT的时代,DT就是Data Technology数据科技,显示大数据对于阿里巴巴集团来说举足轻重。
 
  有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是赢得竞争的关键。
 
  大数据的价值体现在以下几个方面:
 
  (1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;
 
  (2)做小而美模式的中小微企业可以利用大数据做服务转型;
 
  (3)面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。
 
  不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。”这确实是需要警惕的。
 
  在这个快速发展的智能硬件时代,困扰应用开发者的一个重要问题就是如何在功率、覆盖范围、传输速率和成本之间找到那个微妙的平衡点。企业组织利用相关数据和分析可以帮助它们降低成本、提高效率、开发新产品、做出更明智的业务决策等等。例如,通过结合大数据和高性能的分析,下面这些对企业有益的情况都可能会发生:
 
  (1)及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。
 
  (2)为成千上万的快递车辆规划实时交通路线,躲避拥堵。
 
  (3)分析所有SKU,以利润最大化为目标来定价和清理库存。
 
  (4)根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。
 
  (5)从大量客户中快速识别出金牌客户。
 
  (6)使用点击流分析和数据挖掘来规避欺诈行为。

大数据IT分析工具

  大数据概念应用到IT操作工具产生的数据中,大数据可以使IT管理软件供应商解决大广泛的业务决策。IT系统、应用和技术基础设施每天每秒都在产生数据。大数据非结构化或者结构数据都代表了“所有用户的行为、服务级别、安全、风险、欺诈行为等更多操作”的绝对记录。
 
  大数据分析的产生旨在于IT管理,企业可以将实时数据流分析和历史相关数据相结合,然后大数据分析并发现它们所需的模型。反过来,帮助预测和预防未来运行中断和性能问题。进一步来讲,他们可以利用大数据了解使用模型以及地理趋势,进而加深大数据对重要用户的洞察力。他们也可以追踪和记录网络行为,大数据轻松地识别业务影响;随着对服务利用的深刻理解加快利润增长;同时跨多系统收集数据发展IT服务目录。
 
  大数据分析的想法,尤其在IT操作方面,大数据对于我们发明并没有什么作用,但是我们一直在其中。Gartner已经关注这个话题很多年了,基本上他们已经强调,如果IT正在引进新鲜灵感,他们将会扔掉大数据老式方法开发一个新的IT操作分析平台。

本文来自E先生的博客,如若转载,请注明出处:https://www.javajz.cn

留言区

联系人:
手   机:
内   容:
验证码:

历史留言

欢迎加Easy的QQ